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AN ALGORITUK FOR RISCALING A FATRIX POSITIVE DEFINITE

Hui Hu

AM tract

For a given square real matrix M, we present a general algorithm

which decides the existence of a positive diagonal matrix D such that

DM is positive definite and which constructs the D if it exists. It

is shown that solving this matrix rescaling problem is equivalent to

finding a solution of an infinite system of linear inequalities. The

algorithm solves the infinite system of linear inequalities by

generating and solving a sequence of linear programs.
3|

1. Introduction

Given a square real matrix M, does there exist a positive diagonal

matrix D such that DM is positive definite? If such a D exists,

how can it be constructed? Such questions arise in mathematical

economics and in the study of certain engineering systems [I]. A

necessary and sufficient condition for the existence of such D for

3 3 matrices was given by Cross [4]. The existence of such D for

Leontief matrices was proved by Tartar [121 and Dantzig (5]. A general

necessary and sufficient condition for the existence of such D was [

given by Barker, Berman and Plemmons [1. However, the condition is
#, ~ ~.............

difficult to verify in practice. Methods for constructing such D for
............................................ .. ........

some special classes of matrices were discussed in [11 and [21.
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In this paper we present a general algorithm which decides the

existence of such D and which constructs such a D if it exists. In

Section 2 we explain notation and preliminaries. In Section 3 we

specify the algorithm, prove its correctness and convergence, and

discuss conditions that guarantee termination in a finite number of

steps. Computational results are presented in Section 4. Finally, we

discuss possible ways to accelerate the convergence in Section 5.

2. Notation and Preliminaries

An n x n real matrix M, not necessarily symmetric, is positive

Tn
definite if xTMx > 0 for all 0 x e Rn.

If there exists a positive diagonal matrix D such that DM is

positive definite, we say that M can be rescaled positive definite.

Such matrices are called "diagonally stable" in [I and

"Volterra-Lyapunov stable" in 14].

Superscripts on vectors are used to denote different vectors, while

subscripts are used to denote different components of a vector.
Le n-i ={ Rn T nJ

Let S = -x E R x x - 1} denote the unit sphere in Rn  and

n-I n-i n,S + {X 1E S x > 0} denote the set of nonnegative vectors in S
+q

D(x) is a diagonal matrix with diagonal elements xi  for

i = 1, ... , n.

For a real symmetric matrix B, let X[B] stand for the smallest

elgenvalue of B and V[B] a corresponding elgenvector of unit length.

Given a mathematical programming problem (P), v(P) denotes the

optimal objective function value of (P).

i n 1 nLet e be the i-th unit vector of R and e = e + + e

2
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conv(S) denotes the convex hull of S.

Nx1 denotes the Euclidean norm of x.

Fact 1. M is positive definite if and only if M + MT is

positive definite.

Fact 2. M is positive definite if and only if x Mx > 0 for all
x n-i sn-I Rn: T

x E S , where S = {x R x x = }.

Fact 3. All principal minors of M remain sign invariant under a

positive rescaling DM.

Fact 4. If M is positive definite, then all its principal minors

are positive (see, e.g., Cottle [31).

TFact 5. If M is positive definite, then B MB is positive

definite for any real nonsingular matrix B.

Fact 6. For any real symmetric matrix B,

XIB] = min {u TBu: u c S n- } (see, e.g., Wilkinson [13], p. 98-99).

Fact 7. For any real symmetric matrix B, X[B] is a continuous

function of the elements of B (see, e.g., Isaacson and Keller [91,

p. 136).

Remark 1.

(1) Let DM (MD) be a positive rescaling of the rows (columns) of

the matrix M. M can be column-rescaled positive definite if and only

if M can be row-rescaled positive definite. Indeed, if DM is

positive definite, where D is a positive diagonal matrix, then

(D- ) TDMD- I = MD-I is also positive definite (Fact 5) and vice versa.

(2) We are only interested in rescaling nonsymmetric matrices

because if a real symmetric matrix is not positive definite, then it can

3



not be rescaled positive definite. For given a real symmetric matrix

M, if all its principal minors are positive, then M is positive

definite. Otherwise, at least one of the principal minors of M is not

positive. Therefore, DM has at least one nonpositive principal minor

for any positive diagonal matrix D (Fact 3) and DM is not positive

definite (Fact 4).

(3) If M can be rescaled positive definite, then it is easy to

see that M is nonsingular and the diagonal elements of M are

positive (by Fact 4, dimil > 0 for all i, which implies mii > 0 for

all i). Therefore, without loss of generality we assume that the

matrix M to be rescaled is nonsingular and has only positive diagonal

elements.

3. The Algorithm and its Convergence

First we show that solving the matrix rescaling problem is

equivalent to finding a solution of an infinite system of linear

inequalities.

Theorem 1. Suppose that all diagonal elements of matrix M = (m )are
ij

positive. Then M can be rescaled positive definite if and only if the

following infinite system of linear inequalities

T -(ISLI): (D(u)Mu) x > 1 for all u 1

has a solution. Moreover, for any x solving (ISLI), D(x) rescales

M positive definite.

4
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Proof. If there exists a positive diagonal matrix D(d) such that

T
D(d)M is positive definite, let f(u) = u D(d)Mu. f(u) is a continuous

function of u and Sn- I is a compact set. Hence, f(u) achieves its

n-i Sn-'infimum on S i.e., there exists u E S such that f(u) > f(u) > 0

for all u 1. Let X,= d /f(u) for i = 1, ... , n, we have

T- T n-i
(D(u)Mu) u D(d)Mu/f(u) = f(u)/f(u) I for all u S . Thus,

(ISLI) has a solution. On the other hand, if x is a solution of

T - T- n-I(ISLI), then we have u D(x)Mu = (D(u)Mu) x > I > 0 for all u E .

By Fact 2, D(X)M is positive definite. To complete the proof, we

only need to show that xi > 0 for all i = 1, ... , n. Indeed,

i T i i n-i(e ) D(x) = miii > 0 for all i = 1, ... n since e E ;

also, all mu are positive by assumption. Consequently, all x.

are positive. D'

Theorem I tells us that M can be rescaled positive definite if

and only if (ISLI) has a solution; and moreover, for any x solving

(ISLI), D(x) rescales M positive definite. The algorithm we are

going to present is actually to decide whether (ISLI) has a solution

or not and to find such a solution if it exists.

It is well known that deciding whether a finite system of linear

inequalities has a solution is equivalent to solving a linear program

(see, e.g., Dantzig [6], Chapter 5). In an analogous way, to solve the

infinite system of linear inequalities (ISLI), we solve (DILP)--the

dual of the infinite linear program (ILP) (see, e.g., Duffin, Jeroslow

and Karlovitz [81).

9I
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*(ILP): minimize x1 + X 2 + g* + x

4!

subject to

(D(u)Mu) Tx > 1 for all u E n - 1

(DILP): maximize YI

iCA

subject to

D(ui)Muiy i = e

iEA

Y, > 0 for all i E A

i n-I
A is finite and {u i E A) c

This column generating algorithm is the analogue of a cutting plane

algorithm applied to (ILP). It generates and solves a sequence of

linear programs (LP(k)) for k = 1, 2, .... If v(LP(k)) tends to

infinity, then H can not be rescaled positive definite (Theorem 3).

Otherwise, a positive vector x which rescales M positive definite

will be found after finitely many iterations (Theorem 2).

We assume that the input matrix M is nonsingular and has only

positive diagonal elements (Remark 1).

Algorithm.

Step 1.

Let k: = 0;

let (LP(k)) be the following linear program:

64.-.

• . . . • . . o-. .,. wo........ °....•... .................



n
maximize yi 

V

i=

subject to

n e
Me )eMe Y,

Y,>0 for i 1,..

let C < 1 be a small positive number (e.g., c 10- 6

*Step 2.

k
Let x be an optimal dual solution of (LP(k));

find X ksatisfying Ix k XD(x k)M +- M TD(x kJ < (1/2)c;

if Xk> (1/2)c, go to Step 4.

Step 3.

k+I n-I
Find a vector u C S such that

NIu - V[D(x k)M + MTD(x k IR < c and (u k+)TD(xk)Muk~ < C;

k+1 k+1
form (LP(k+1)) by adjoining the column, D(u )Mu ,to the

constraint matrix of (LPMk) with cost coefficient 1;

solve (LP(k+I));

if v(LP(k+1)) = ,then go to Step 5;

else k: =k + 1, go to Step 2.

Step 4.

k
D(x )M is positive definite, stop.

Step 5.

M can not be rescaled positive definite, stop.

7



Comments on the algorithm.

(1) Since we assume m i > 0 for all 1- 1, n , (LP(O)) is

feasible. Therefore, (LP(k)) is feasible for all k.

(2) Efficient algorithms for calculating eigenvalues and

eigenvectors of a matrix are discussed in Wilkinson [131.

(3) A symmetric matrix B is positive definite if and only if

X[B] > 0; in general this is not true for nonsymmetric matrices.

Therefore, we calculate the smallest eigenvalue of the symmetric matrix

D(x k)M + M TD(x ) in order to know whether D(x k)M is positive definite

(Fact 1).

(4) If the algorithm does not stop at an iteration k, then it
k+l k+ +

generates u satisfying (D(u k+)Muk+1)Txk < < 1. While

i iTk kD(u )Mui) x > 1 for all i 0, 1, ... , k since x is an optimal

k kdual solution of LP(k). Therefore, no column D(u )Mu can be brought

in more than once.

Next, we prove the correctness and convergence of the algorithm and

discuss conditions that guarantee termination in a finite number of

*. iterations.

Theorem 2. If there exists a positive diagonal matrix D such that DM

is positive definite, then the algorithm can find such a D after

finitely many iterations.

8
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Proof. If M can be rescaled positive definite, then the corresponding

program (ILP) is feasible by Theorem 1. Let x be a feasible solution

of (ILP). Then, for all feasible solutions of (DILP), we have:

Yi Y (D(u )Mui)T = e x.
ifA iCA i

Namely, the objective function of (DILP) is bounded from above by

T-
e x. The algorithm generates a sequence of linear programs (LP(k)),

k = 0, 1, .... Each (LP(k)) is feasible and is the restriction of

(DILP) to certain columns. Hence, the objective function of (LP(k))

T-
is also bounded from above by e x. By the duality theory of linear

k
programming, we can find an optimal dual solution x of (LP(k))

which satisfies

- k Tk T-
0< (m i xi < e x < e x for all i =1,..., n.

n:
Let T = {x R : 0 < x, < e x for all i = 1, ... , n) and

Tn-
F(x,u) = (D(u)Mu) x. Then F(x,u) is uniformly continuous on T S Sn-1,

i.e., for any 6 > 0, there exists n > 0 such that

(a) (x,u) - (i,u)O < implies IF(x,u) - F(x,u)I < 6 for all

(xu) and (x,u) in T x Sn - .

In particular, for 6 = I - E > 0, there exists > 0 such that (a)

k n-I
holds. If the algorithm goes on infinitely, then it generates u c S

n-I
for k = 0, 1, .... Because S is compact, for the T1 > 0, there

i uj u

exists u and u in the sequence satisfying IOu uI < ).

9



Without loss of generality, we assume that i < J. Because the

*" algorithm does not stop at iteration J-1, we have:

J-1 i i i TiJ-I
(b) F(x-,u i ) = (D(u )Mu ) x > 1;

J -1i = j jTJ-
(c) F(x -,u) (D(u )Mu )x E.

However, (b) and (c) imply that IF(xJ-l,u i) - F(x- >1 - 6

while I(xJl,ui) - (xJ -,u )H < , which contradicts the uniform

n-I
continuity of F(x,u) on T x Sn . It follows that the algorithm must

be finite in the case M can be rescaled positive definite. 0

Remark 2. We have proved the finiteness of the algorithm under the

assumption that M can be rescaled positive definite. In fact, the

" Tk "
boundedness of v(LP(k)) = e x for k = 1, 2, ... is the only

assumption we need for the proof. Since the feasible region of (LP(k))

can be considered as a subset of the feasible region of (LP(k+I)), we

have v(LP(k+l)) > v(LP(k)) for all k. Therefore, in the case M can

not be rescaled positive definite, the algorithm generates a sequence of

feasible solutions of (DILP) whose objective function values tend

inc-easingly to infinity. Hence, the following theorem is established.

Theorem 3. The following are equivalent:

(I) M can not be rescaled positive definite;

(2) v(DILP) =

(3) v(LP(k)) tends to infinity as k + .

.....* . * .*, -- .



We have seen that the algorithm is f inite in the case M can be

rescaled positive definite. Next, we give a condition which ensures the

* finiteness of the algorithm in the case M can not be rescaled positive

definite, i.e., there exists j such that v(LP(j))=

Condition 1. For every nonnegative and nonzero diagonal matrix D,

n-1
there exists u c S such that u TDMu < 0. Equivalently, there does

not exist nonnegative and nonzero diagonal matrix D such that DM is

positive semidefinite.

Theorem 4. If M satisfies Condition 1, then the algorithm stops after

finitely many iterations.

T TProof. Define G(x) =minimize u D(x)Mu X[(D(x)M + M D(X))/2] (Fact 6).
xe S

It follows from Fact 7 that G(x) is a continuous function of x.

Since M satisfies Condition 1, we have G(x) < 0 for all x c SnI

n-1 Sn-I
where S~ + {X -E S x > 01. Therefore,

=maxirnife G(x) =maxirnife minimije uTDxMu < 0.

Let F(x,u) = (D(u)Mu) Tx =u TD(x)Mu. For 6=-C1/2)03 > 0, there exists

I~ > 0 such that

(d) I(x,ii) -(i,ii)P1 < 7) implies IF(x,u) -F(X,;i)I < &for all

(x,u) and (-x,ii) in Sn +~ XnS



As indicated in the proof of Theorem 2, if the algorithm goes on

%i jinfinitely, it generates u and u (i < J) satisfying lui - uJI < n

and F(xJ-,u ) > 1. Thus,

(e) F(xTJ-1/xJ-INu i ) > I/IxJ-1 > 0.

Let w = V[D(x J-)M + M TD(x J-)] V[(D(xJ-1/xJ-1I)M + MTD(xJ-1/IxJ-I)/21

-.. and assume that e < TI, where the c is specified in Step I of the

algorithm. Then, lu1 - w < £ < n (Step 3) and hence we have

IF(x J-I/NxJ-I,u j) - F(x J-/Ixj-I,w)l < 6 - -(1/2)0 by the uniform

n-i n-i
continuity of F(x,u) on S + x Sn  Thus,

(f) F(xJ-l/IxJ-1l,u j )

< -(1/2)P + w TD(x J-1/x/J-1 )Mw

= -(1/2)0 + (1/2)wT (D(xJ-
1 /xJ-)M + MTD(xJ-l/IxJ-ll))w

= -(1/2)0 + X[(D(x J-/Ix J-I)M + MTD(xJ-I/NxJ-Il))/21

= -(1/2)0 + G(xJ-1 /IxJ-1 1)

< -(1/2) +

= (i/2)P.

However, (e) and (f) imply that

IF(xJI/IxJ 1 ,ui) - F(xJ -/l-1 1 I,uJ)I > -(1/2)0 6 while

I(xJ-I/WxJ-IN'u t ) -(xJ-l/lxJ-lfl uJ )I luI - u J1 < I, .

n-i n-I

which contradicts the uniform continuity of F(x,u) on S x

Therefore, if M satisfies Condition 1, then the algorithm terminates

after finitely many iterations (assume that E < ). 0.

12
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In the rest of this section, we discuss other necessary and

sufficient conditions for M to be rescaled positive definite and

equivalent statements of Condition 1. First, we state a theorem that we

are going to use in the following discussion.

Alternative Theorem. Let T be a set (T may be infinite), h i(t) for

i = 1, ... , n be real-valued functions on T, and

P = {(h I(t), ... ,hn(t)): t C T}. If P is closed, then

(1) the system (h (t), ... ,h(t))Tx > 0 for all t c T has a

solution if and only if the origin is not contained in conv(P),

the convex hull of P;

(2) the system (h (t), ... ,h(t)) Tx > 0 for all t c T has a

non-trivial (i.e., nonzero) solution if and only if the origin is

not contained in the interior of conv(P) (Dines and McCoy [71).

Lema 1. M can not be rescaled positive definite if and only if

{x: (D(u)Mu)Tx > 0 for all u c S = .

Proof. Let T = {x: (D(u)Mu)Tx > 0 for all u n-1. If T = 4,

then (ISLI) has no solution. By Theorem 1, M can not be rescaled

positive definite. On the other hand, if T # 4, let x c T. Then,

T - T n-1
u D(x)Mu (D(u)Mu) x > 0 for all u c S Hence, D(x)M is

positive definite and x is a positive vector (assume that all

diagonal elements of M are positive). .

13
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Lea 2. M can not be rescaled positive definite if and only if the

origin is contained in conv(D(u)Mu: u cS n- 1

" Proof. It is easy to show that {D(u)Mu: u E 1} is closed. The

lemma then follows easily from the Alternative Theorem and Lemma 1. 0

Condition 2. 0 c int{conv(D(u)Mu: u C Sn})

Lem 3. Condition 1 and Condition 2 are equivalent.

Proof. Although Conditions 1 and 2 look different, they are in fact

equivalent. Indeed, if M satisfies Condition 2, then the system
T Tsn-I

u TD(x)Mu - (D(u)Mu) Tx > 0 for all u E S has no non-trivial

solutions (by the Alternative Theorem). This implies for any

0 A d > 0, there exists u c S n-  such that u TD(d)Mu < 0, i.e., M

satisfies Condition 1. On the other hand, if M does not satisfy

Condition 2, then (by the Alternative Theorem) there exists x ' 0

T T_ n-1such that u D(x)Mu = (D(u)Mu) x > 0 for all u c S In particular,

i T - i
(e ) D(x)Me f imii > 0 for all i = 1, ... , n. This implies

x > 0 for all i - 1, ... , n (assume that all diagonal elements of
2i

M are positive). Hence, M does not satisfy Condition 1.

14
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Remark 3. Notice that G(x) = minimi e uTD(x)Mu is a continuous
X. S

n -

function of x, it is not hard to show the following.

(1) M can be rescaled positive definite if and only if
maximie minimi e uTD(x)Mu > 0.

xES n uESn -f

(2) Condition 1 or 2 is equivalent to

T
Condition 3. maximiZe minimife u-D(x)Mu < 0.

xS - I  uS .,.-

We summarize all nescssary and sufficient conditions for M to be

rescaled positive definite in Theorem 5.

Theorem 5. Suppose that all diagonal elements of M are positive.

Then the following are equivalent:

(1) M can be rescaled positive definite;

(2) (ISLI): (D(u)Mu) Tx > I for all u c Sn - 1  has a solution;
T sn-i

(3) (D(u)Mu) Tx > 0 for all u , S has a solution;

n-I(4) the origin is not contained in conv(D(u)Mu: u e Sn);

(5) maximife minilmie uTD(x)Mu > 0. 0n - L u.ES n - f
+ "

Summary. The algorithm solves the matrix rescaling problem correctly

and completely. It is finite if M can be rescaled positive definite

or M satisfies Condition I (or 2, 3). It is possibly infinite only if

M can not be rescaled positive definite but still can be rescaled

positive semidefinite (i.e., there exists 0 d > 0 such that D(d)M

is positive semidefinite).

15
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4. Example and Computational Results

Example:

I. /I -1 0
I0

M I I -17

4 0 1

We use revised simplex method to solve (LP(k)) and follow the

knotation in Dantzig [61. For convenience, we do not normalize u . We

use B to denote the optimal basis of LP(k) and k+I the relative

cost factor of the entering column for LP(k+l).

Tableau of (LP(O)) (k = 0)

Basis inverse yl Y2  y3  r.h.s.

1 0 0 1 0 0 I

o 1 0 0 1 0 1

• 0 0 1 0 0 1 1

0 0 0 1 1 1 0

Basis inverse Yl  y2  y3  r.h.s.

1 0 0 1 0 0 1

o 1 0 0 1 0 1

0 0 1 0 0 1 1

-1 -1 -1 0 0 0 -3

1.

16--
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1 (1 1 )

u 0 1 1
B1c u )M x (0 -16 1

Tableau of (LP(1)) (k =1)

Basis inverse y y2  3  y4 r.h.s.

1 0 0 1 0 0 0 1

o 1 0 0 1 0 -16 1

o 0 1 0 0 1 1 1

-1 - 10 0 0 16 -3

Basis inverse Yl y 2  y 3  y4  r.h.s.

1 0 0 1 0 0 0 1

0 1 16 0 1 16 0 17

o 0 1 0 0 1 11

-1 -1 -17 0 0 -16 0 -19

17



x= (1 1 -17) T

2u (-1

B-ID(u
2 )Mu2 . (2 -65 -3)T

2 I- x'D(u2 )M 2 =6

=1 xD~ )MU 67
2 .

Tableau of (LP(2)) (k = 2)

Basis inverse Yl Y2  Y3  Y4  Y5  r.h.s.

1 0 0 1 0 0 0 2 1

0 1 16 0 1 16 0 -65 17

0 0 1 0 0 1 1 -3 1

-1 -1 -17 0 0 -16 0 67 -19

Basis inverse yl Y2  Y3  Y4  Y5  r.h.s.

0.5 0 0 0.5 0 0 0 1 0.5

32.5 1 16 32.5 1 16 0 0 49.5

1.5 0 1 1.5 0 1 1 0 2.5

-34.5 -1 -17 33.5 0 -16 0 0 -52.5

S.-



" -. - --- " -. .- - . . . .. -7 .7.. . - 7 ....

2T
x = (34.5 1 17) T

3T
u = (-1 -4 0)

B-D(u3 )Mu
3 = (-1.5 -77.5 -4.5)T

c 3 = i - x2 D(u 3 )Mu3 
= 84.5

Since B- ID(u 3)Mu3 < 0 and -3 > 0, we know that v(LP(3)) =

Therefore, M can not be rescaled positive definite.

Remark 5. It follows easily from Facts 3 and 4 that if M can be

rescaled positive definite, then M is a P-matrix (i.e., all principal

minors of M are positive). The above 3 x 3 matrix is a P-matrix but

it can not be rescaled positive definite.

Computational Results.

We have coded the algorithm in FORTRAN. We use the subroutine

MINOS (from the Systems Optimization Laboratory, Department of

Operations Research, Stanford University) to solve (LP(k)) and the

subroutine FO2ABF (from NAG Library, Stanford University) to calculate

eigenvalues and eigenvectors. The data were randomly generated and the

program was executed on a DEC 20 computer with the following results,

see Table 1.

19
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! 4.

Table 1

Problem number of CPU time

dimension iterations (second) r

3 x 3 5 3.15 ,

5 x 5 14 7.18

6 x 6 9 4.69

8 x 8 9 6.26

16 x 16 8 6.23

5. Accelerating the Convergence

This column generating algorithm is the analogue of a cutting

plane algorithm applied to (ILP). It solves the infinite linear

program (DILP) by generating and solving a sequence of linear programs

(LP(k)), k = 0, 1, .... If the algorithm does not stop at iteration k,

k+1 k+1
then a new column D(u )Mu is generated and brought in. This is a

k+ 1 k+I) T
cut, (D(u )Mu x > 1, on (ILP). If we want to accelerate the

convergence of the algorithm, we have to find ways to generate more

efficient cuts.

Let's look at the problem geometrically. Suppose the algorithm

does not stop at iteration k. Let fk(u) = uT D(x k)Mu. Then,

i k+ 1
f (u ) > 0, i = 1, , k and f (uk ) < 0. Since f (u) is a

*k k k
i

continuous function, for each u , i = 1, ... , k, there exists a

relatively open neighborhood Nk (ui)_ Sn - 1 such that f (u) > 0 for
k k

i k+1 k
all u c Nk(u ) f (uk ) < 0 means that U

k  Nk(u ) does not

20



n-I
cover S Suppose M can be rescaled positive definite and the

k ikU sn-i .
algorithm stops at iteration k. That means Uk=1 N k ) covers S . .

Therefore, we want to make N k(U i) bigger so that we need fewer N k(U)

Sk+1 k+1 T
to cover S . Let's consider the cut CD u )Mu x > a for some

"i .i

a > 1, and hope that it will give a bigger Nk+i~ui). However, since we

are solving linear programs, changing all the cost coefficients to a

k+1
will result in a solution ax and therefore has no influence on

k+2 "

choosing u+. If we go over the proofs of Theorems I and 2, we find

that if we change (D(u k)Muk ) Tx > 1 to (D(u k)Muk ) Tx > a k' where

0 < 6 < a < L for all k, then Theorems 1 and 2 still hold. Since

k~i ( 1 2 )ki k T k k+1
fk u k + 1 (1/2)uk+1[D(x k)M + M D(x )Iu

k T k= (1/2)X[D(xk)x + M D(xk)],

if f k(u k+ ) < 0, a natural way to choose ak+1 is:

k+1 k T k
ak+l = -Of (uk ) = -Ox [D(x )M + MD(x)],

k+1 k+I

where 0 is a positive constant (if -Of k(u k + ) < 6, just let

ak+1 =6).

A number of randomly generated problems were computed using the

above idea (O = 2) and compared with a k 1, see Table 2.

2

21.

. .I.



Table 2

problem no. of iterations no. of iterans
dimension (ak 1 for all k) (ak = -2f (u )

____k___k_ k

5 x 5 14 2

6 x 6 9 8

8x8 9 2

16 x 16 8 3
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